

June 4, 2009 St. Louis Lambda Lounge
Haskell Presentation

Alex Stangl

Overview and study Vending Machine code

Haskell overview

●Purely functional
●Strongly typed with type inference,
polymorphism

●Pattern Matching
●Lazy (non-strict), by default

Haskell overview cont'd

●Stable Haskell 98 standard, GHC (de
facto standard), new standard coming

●Concise, Powerful, Open
●Research lab for new ideas

Purely Functional

● Like a Mathematical function, result based
only on arguments, with no side effects

● Referential Transparency – replacing pure
function call with its result value has no
effect on program semantics; no difference
between reference to thing and thing itself

● Well suited for Memoization (Dynamic
Programming / caching)

● Code easier to reason about
● Intelligent compiler can optimize

-- Vending Machine Simulator
-- written 02/18/2009 by Alex Stangl
-- for 5/2009 STL Lambda Lounge shootout

module VendMachine where

import Data.Char(chr, ord, toUpper)
import Data.List((\\), sortBy, stripPrefix)
import Data.Ord(comparing)

Comment block.
 {- Can also {- nest -}

comments. -}

-- Vending Machine Simulator
-- written 02/18/2009 by Alex Stangl
-- for 5/2009 STL Lambda Lounge shootout

module VendMachine where

import Data.Char(chr, ord, toUpper)
import Data.List((\\), sortBy, stripPrefix)
import Data.Ord(comparing)

Simple module
declaration syntax.

-- Vending Machine Simulator
-- written 02/18/2009 by Alex Stangl
-- for 5/2009 STL Lambda Lounge shootout

module VendMachine where

import Data.Char(chr, ord, toUpper)
import Data.List((\\), sortBy, stripPrefix)
import Data.Ord(comparing)

Imports from libraries into
local namespace

Operators named
with symbols must

be enclosed in
parens when not

used infix.

-- Vending Machine Simulator
-- written 02/18/2009 by Alex Stangl
-- for 5/2009 STL Lambda Lounge shootout

module VendMachine where

import Data.Char(chr, ord, toUpper)
import Data.List((\\), sortBy, stripPrefix)
import Data.Ord(comparing)

-- currency representation, either coins or bills
data Currency = Nickel | Dime | Quarter | Dollar
 deriving (Eq, Show)

Type
constructor

Data
constructors.

Algebraic datatype
often parameterized,

but not here

-- currency representation, either coins or bills
data Currency = Nickel | Dime | Quarter | Dollar
 deriving (Eq, Show)

Automatically
generate

functions for
equality and

show.

-- return amount of currency, in cents
amount :: Currency -> Int
amount Nickel = 5
amount Dime = 10
amount Quarter = 25
amount Dollar = 100

This is a type signature.
Read “::” as “... has type ...”

amount “has type”
function taking 1

Currency argument,
returning an Int

-- return amount of currency, in cents
amount :: Currency -> Int
amount Nickel = 5
amount Dime = 10
amount Quarter = 25
amount Dollar = 100

Function comprised of 4
equations covering the

possibilities. Simple
pattern matching on data

constructors here.

-- return display/input name of currency
name :: Currency -> String
name x = map toUpper $ show x

Type signature of
simple function taking 1
Currency argument and

returning a String.

-- return display/input name of currency
name :: Currency -> String
name x = map toUpper $ show x

Low precedence
right-associative

function
application.

Pattern
variable x
bound to
Currency
argument.

-- return display/input name of currency
name :: Currency -> String
name x = map toUpper $ show x

First use show to
convert Currency

argument to its String
representation...

-- return display/input name of currency
name :: Currency -> String
name x = map toUpper $ show x

First use show to
convert Currency

argument to its String
representation...

...then apply map toUpper
to the String. String is a
List of Char, and map

applies toUpper to each
Char, producing an
uppercased String.

--- return slotname for slot: 0.. -> A..
slotname :: Int -> String
slotname slot = slotnamR (slot+1)
slotnamR slot
 | slot <= 26 = alpha slot
 | rem == 0 = slotnamR (quo-1) ++ "Z"
 | otherwise = slotnamR quo ++ alpha slot
 where (quo, rem) = slot `quotRem` 26
 alpha n = [chr (64+n)]

Type signature for function taking 1 Int
argument and returning a String,

converting 0-based Int to a slot name
(ala Excel column names.)

--- return slotname for slot: 0.. -> A..
slotname :: Int -> String
slotname slot = slotnamR (slot+1)
slotnamR slot
 | slot <= 26 = alpha slot
 | rem == 0 = slotnamR (quo-1) ++ "Z"
 | otherwise = slotnamR quo ++ alpha slot
 where (quo, rem) = slot `quotRem` 26
 alpha n = [chr (64+n)]

slotname delegates to helper
function slotnamR, passing it a 1-

based slot number.

--- return slotname for slot: 0.. -> A..
slotname :: Int -> String
slotname slot = slotnamR (slot+1)
slotnamR slot
 | slot <= 26 = alpha slot
 | rem == 0 = slotnamR (quo-1) ++ "Z"
 | otherwise = slotnamR quo ++ alpha slot
 where (quo, rem) = slot `quotRem` 26
 alpha n = [chr (64+n)]

recursive helper slotnamR uses
guards and a where clause that
applies across all the guards.

Return both quotient
and remainder of divide

by 26

{- return slot number, given its name (ala Excel
 column names: A..Z == 0..25,
 AA..AZ == 26..51, BA..BZ == 52..77, etc.) -}
slotnumber :: String -> Int
slotnumber s = sltnR 0 0 s
sltnR _ t [] = t
sltnR 0 0 (x:xs) = sltnR 1 (ord(x)-65) xs
sltnR l t (x:xs) = sltnR (l+1) (26*(t+1)+ord(x)-65) xs

Inverse of previous function – given
a slot name string, return its

corresponding 0-based number.

{- return slot number, given its name (ala Excel
 column names: A..Z == 0..25,
 AA..AZ == 26..51, BA..BZ == 52..77, etc.) -}
slotnumber :: String -> Int
slotnumber s = sltnR 0 0 s
sltnR _ t [] = t
sltnR 0 0 (x:xs) = sltnR 1 (ord(x)-65) xs
sltnR l t (x:xs) = sltnR (l+1) (26*(t+1)+ord(x)-65) xs

Delegates to helper sltnR which takes
3 arguments: character index, result

accumulator, and remaining
characters to process.

{- return slot number, given its name (ala Excel
 column names: A..Z == 0..25,
 AA..AZ == 26..51, BA..BZ == 52..77, etc.) -}
slotnumber :: String -> Int
slotnumber s = sltnR 0 0 s
sltnR _ t [] = t
sltnR 0 0 (x:xs) = sltnR 1 (ord(x)-65) xs
sltnR l t (x:xs) = sltnR (l+1) (26*(t+1)+ord(x)-65) xs

First equation handles end-of-
string [] in which case we return
accumulator t. Pattern matching

becomes more obvious here.

{- return slot number, given its name (ala Excel
 column names: A..Z == 0..25,
 AA..AZ == 26..51, BA..BZ == 52..77, etc.) -}
slotnumber :: String -> Int
slotnumber s = sltnR 0 0 s
sltnR _ t [] = t
sltnR 0 0 (x:xs) = sltnR 1 (ord(x)-65) xs
sltnR l t (x:xs) = sltnR (l+1) (26*(t+1)+ord(x)-65) xs

Second equation handles first
slotname character as a special case,

recurses to general case.

(:) list constructor used
as a deconstructing
pattern here, will not

match empty list.

ord is inverse of chr,
returning Unicode code
for specified character

{- return slot number, given its name (ala Excel
 column names: A..Z == 0..25,
 AA..AZ == 26..51, BA..BZ == 52..77, etc.) -}
slotnumber :: String -> Int
slotnumber s = sltnR 0 0 s
sltnR _ t [] = t
sltnR 0 0 (x:xs) = sltnR 1 (ord(x)-65) xs
sltnR l t (x:xs) = sltnR (l+1) (26*(t+1)+ord(x)-65) xs

General recurrence case: multiply
accumulated result by 26, add in
current character's offset from 'A',

tail recurse.

{- find change of specified total from l, if possible,
 using greedy, relatively efficient algorithm. Use
 either flip or negation to reverse sort order. -}
getChange l total = findTotal (sortBy (flip $
 comparing amount) l) [] total
findTotal [] _ total = Nothing
findTotal (x:xs) acc total
 | amount x > total = findTotal (dropWhile (==x) xs)
 acc total
 | amount x == total = Just (x:acc)
 | otherwise = case findTotal xs (x:acc)
 (total- amount x) of
 Nothing -> findTotal (dropWhile (==x) xs)
 acc total
 Just a -> Just a

No explicit type signature here,
but l is list of Currency, total is

desired total. Haskell type
inferrence figures out type
signature. getChange ::

[Currency] -> Int -> Maybe
[Currency]

getChange delegates to
helper findTotal, this time

a top-level function
rather than defined in

where clause.
TIMTOWDI

{- find change of specified total from l, if possible,
 using greedy, relatively efficient algorithm. Use
 either flip or negation to reverse sort order. -}
getChange l total = findTotal (sortBy (flip $
 comparing amount) l) [] total
findTotal [] _ total = Nothing
findTotal (x:xs) acc total
 | amount x > total = findTotal (dropWhile (==x) xs)
 acc total
 | amount x == total = Just (x:acc)
 | otherwise = case findTotal xs (x:acc)
 (total- amount x) of
 Nothing -> findTotal (dropWhile (==x) xs)
 acc total
 Just a -> Just a

What's going on here? Inside the
parens we call sortBy (which takes

a comparison function) on l, our
list of Currency.

comparing is a function (or
“combinator”) from library that takes

another function (amount) and
returns a function. The returned
function here would compare 2

Currency values (via amount) and
return an Ordering for sortBy

{- find change of specified total from l, if possible,
 using greedy, relatively efficient algorithm. Use
 either flip or negation to reverse sort order. -}
getChange l total = findTotal (sortBy (flip $
 comparing amount) l) [] total
findTotal [] _ total = Nothing
findTotal (x:xs) acc total
 | amount x > total = findTotal (dropWhile (==x) xs)
 acc total
 | amount x == total = Just (x:acc)
 | otherwise = case findTotal xs (x:acc)
 (total- amount x) of
 Nothing -> findTotal (dropWhile (==x) xs)
 acc total
 Just a -> Just a

flip applied to the function returned
by comparing flips the order of its 2
arguments. Net effect: sort the list
of Currency in descending order

{- find change of specified total from l, if possible,
 using greedy, relatively efficient algorithm. Use
 either flip or negation to reverse sort order. -}
getChange l total = findTotal (sortBy (flip $
 comparing amount) l) [] total
findTotal [] _ total = Nothing
findTotal (x:xs) acc total
 | amount x > total = findTotal (dropWhile (==x) xs)
 acc total
 | amount x == total = Just (x:acc)
 | otherwise = case findTotal xs (x:acc)
 (total- amount x) of
 Nothing -> findTotal (dropWhile (==x) xs)
 acc total
 Just a -> Just a

findTotal takes 3 arguments: list of remaining
Currency to consider, result accumulator, and

(remaining) desired total.

First equation handles case where
we've run out of Currency to

consider w/o finding a solution, so
returns Nothing

{- find change of specified total from l, if possible,
 using greedy, relatively efficient algorithm. Use
 either flip or negation to reverse sort order. -}
getChange l total = findTotal (sortBy (flip $
 comparing amount) l) [] total
findTotal [] _ total = Nothing
findTotal (x:xs) acc total
 | amount x > total = findTotal (dropWhile (==x) xs)
 acc total
 | amount x == total = Just (x:acc)
 | otherwise = case findTotal xs (x:acc)
 (total- amount x) of
 Nothing -> findTotal (dropWhile (==x) xs)
 acc total
 Just a -> Just a

Second equation handles remaining cases
with if/else if/else and case clause. Note

deconstructing pattern used to bind x to head
Currency and xs to tail.

If the amount of this currency exceeds our
remaining total, then recurse after

discarding all instances of this Currency

{- find change of specified total from l, if possible,
 using greedy, relatively efficient algorithm. Use
 either flip or negation to reverse sort order. -}
getChange l total = findTotal (sortBy (flip $
 comparing amount) l) [] total
findTotal [] _ total = Nothing
findTotal (x:xs) acc total
 | amount x > total = findTotal (dropWhile (==x) xs)
 acc total
 | amount x == total = Just (x:acc)
 | otherwise = case findTotal xs (x:acc)
 (total- amount x) of
 Nothing -> findTotal (dropWhile (==x) xs)
 acc total
 Just a -> Just a

If amount of x exactly
matches remaining total,
we're done – return result
using Maybe's Just data

constructor.

{- find change of specified total from l, if possible,
 using greedy, relatively efficient algorithm. Use
 either flip or negation to reverse sort order. -}
getChange l total = findTotal (sortBy (flip $
 comparing amount) l) [] total
findTotal [] _ total = Nothing
findTotal (x:xs) acc total
 | amount x > total = findTotal (dropWhile (==x) xs)
 acc total
 | amount x == total = Just (x:acc)
 | otherwise = case findTotal xs (x:acc)
 (total- amount x) of
 Nothing -> findTotal (dropWhile (==x) xs)
 acc total
 Just a -> Just a

Try recursing with x added to accumulator. If
Nothing returned, then no solution possible with x,

so recurse after dropping all of that Currency.

If solution found, return it.

{- find change of specified total from l, if possible,
 using greedy, relatively efficient algorithm. Use
 either flip or negation to reverse sort order. -}
getChange l total = findTotal (sortBy (flip $
 comparing amount) l) [] total
findTotal [] _ total = Nothing
findTotal (x:xs) acc total
 | amount x > total = findTotal (dropWhile (==x) xs)
 acc total
 | amount x == total = Just (x:acc)
 | otherwise = case findTotal xs (x:acc)
 (total- amount x) of
 Nothing -> findTotal (dropWhile (==x) xs)
 acc total
 Just a -> Just a

-- break string up into list of commands delimited by
-- space and/or comma
cmds :: String -> [String]
cmds s = let isSpace = (`elem` [' ', ','])
 in case dropWhile isSpace s of
 "" -> []
 s' -> c : cmds s''
 where (c, s'') = break isSpace s'

-- break string up into list of commands delimited by
-- space and/or comma
cmds :: String -> [String]
cmds s = let isSpace = (`elem` [' ', ','])
 in case dropWhile isSpace s of
 "" -> []
 s' -> c : cmds s''
 where (c, s'') = break isSpace s'

let creates local definitions, similar to
where clause. let can be used anywhere

you write an expression

Use of a “section”, a special case of partial
application, using a binary operator. Here we create

function that takes 1 Char argument and returns True
if it is space or comma.

-- break string up into list of commands delimited by
-- space and/or comma
cmds :: String -> [String]
cmds s = let isSpace = (`elem` [' ', ','])
 in case dropWhile isSpace s of
 "" -> []
 s' -> c : cmds s''
 where (c, s'') = break isSpace s'

Drop characters off head of list while
predicate isSpace returns True (drop

leading commas and spaces).

Apply case expression to remaining
list. If empty, return empty list.

-- break string up into list of commands delimited by
-- space and/or comma
cmds :: String -> [String]
cmds s = let isSpace = (`elem` [' ', ','])
 in case dropWhile isSpace s of
 "" -> []
 s' -> c : cmds s''
 where (c, s'') = break isSpace s'

break takes predicate function
and splits list at point when

predicate returns True. So c is all
characters up to space or

comma, s'' is remainder of string.

-- break string up into list of commands delimited by
-- space and/or comma
cmds :: String -> [String]
cmds s = let isSpace = (`elem` [' ', ','])
 in case dropWhile isSpace s of
 "" -> []
 s' -> c : cmds s''
 where (c, s'') = break isSpace s'

... so result is c prepended to
result of recursively calling

cmds on remainder of string

{- tuple representing machine's current state:
 inventory of coins and bills, user's unspent total,
 count of vending items remaining in each slot -}
data MachineState =
 MachineState{coinbox :: [Currency],
 deposits :: [Currency],
 itemCounts :: [(Int, Int)]}

Algebraic data type representing state of
vending machine. deposits is Currency

deposits not yet spent on purchases. coinbox
contains all other Currency in the machine.

Originally just quantity, now itemCounts
contains (quantity, price) for each slot. I

should have renamed field and used type
synonyms to make this more clear.

{- process machine transitions, taking initial state,
 list of commands, output list, and returning tuple
 of new state and output -}
machine :: MachineState -> [String] -> [String] ->
(MachineState, [String])
machine t [] os = (t, os)
machine t@(MachineState coinbox deposits itemCounts)
(c:cs) os =
 case stripPrefix "GET-" c of
 Just a -> let slotnum = slotnumber a in
 if slotnum < length itemCounts then
 vend slotnum t cs os
 else machine t cs (os ++
 ["REPORT INVALID PRODUCT CODE"])
 Nothing -> case c of
 "NICKEL" -> machine t {deposits =
 Nickel : deposits} cs os
 "DIME" -> machine t {deposits =
 Dime : deposits} cs os

First equation handles end of
command list, returning tuple
of new state and accumulated

output.

{- process machine transitions, taking initial state,
 list of commands, output list, and returning tuple
 of new state and output -}
machine :: MachineState -> [String] -> [String] ->
(MachineState, [String])
machine t [] os = (t, os)
machine t@(MachineState coinbox deposits itemCounts)
(c:cs) os =
 case stripPrefix "GET-" c of
 Just a -> let slotnum = slotnumber a in
 if slotnum < length itemCounts then
 vend slotnum t cs os
 else machine t cs (os ++
 ["REPORT INVALID PRODUCT CODE"])
 Nothing -> case c of
 "NICKEL" -> machine t {deposits =
 Nickel : deposits} cs os
 "DIME" -> machine t {deposits =
 Dime : deposits} cs os

Deconstructing machine state using its
data constructor. Also using t@ “as
pattern” to efficiently refer to tuple
without having to reconstruct it.

stripPrefix attempts to drop prefix
(“GET-”) from string, returning Just
remainder of string, or Nothing if
string doesn't start with “GET-”

{- process machine transitions, taking initial state,
 list of commands, output list, and returning tuple
 of new state and output -}
machine :: MachineState -> [String] -> [String] ->
(MachineState, [String])
machine t [] os = (t, os)
machine t@(MachineState coinbox deposits itemCounts)
(c:cs) os =
 case stripPrefix "GET-" c of
 Just a -> let slotnum = slotnumber a in
 if slotnum < length itemCounts then
 vend slotnum t cs os
 else machine t cs (os ++
 ["REPORT INVALID PRODUCT CODE"])
 Nothing -> case c of
 "NICKEL" -> machine t {deposits =
 Nickel : deposits} cs os
 "DIME" -> machine t {deposits =
 Dime : deposits} cs os

if pattern matches Just a, then a contains
remainder of String. Compute slot number

based on a. If slot number within range,
delegate to vend, else report error.

If result of stripPrefix “GET-”
pattern matches Nothing, then

try parsing other non GET-
commands...

 Nothing -> case c of
 "NICKEL" -> machine t {deposits =
 Nickel : deposits} cs os
 "DIME" -> machine t {deposits =
 Dime : deposits} cs os
 "QUARTER" -> machine t {deposits =
 Quarter : deposits} cs os
 "DOLLAR" -> machine t {deposits =
 Dollar : deposits} cs os
 "COIN-RETURN" -> machine t {deposits =
 []} cs (os ++ map name deposits)
 "SERVICE" -> service t cs os
 _ -> machine t cs (os ++
 ["REPORT DON'T UNDERSTAND " ++ c])

t bound to MachineState via “as
pattern”. Field update syntax

used here to update single field
in t in recursive call, prepending

Currency to deposits.

 Nothing -> case c of
 "NICKEL" -> machine t {deposits =
 Nickel : deposits} cs os
 "DIME" -> machine t {deposits =
 Dime : deposits} cs os
 "QUARTER" -> machine t {deposits =
 Quarter : deposits} cs os
 "DOLLAR" -> machine t {deposits =
 Dollar : deposits} cs os
 "COIN-RETURN" -> machine t {deposits =
 []} cs (os ++ map name deposits)
 "SERVICE" -> service t cs os
 _ -> machine t cs (os ++
 ["REPORT DON'T UNDERSTAND " ++ c])

COIN-RETURN uses field
update syntax to empty deposits,

and put deposits back in to
output stream via map name

Service commands delegate to service.
Report error for any other input.

-- vend item
vend :: Int -> MachineState -> [String] -> [String] ->
(MachineState, [String])
vend slot t@(MachineState coinbox deposits itemCounts)
cs os =
 let unspent = sum $ map amount deposits
 newinv = if count==0 then Left ("REPORT " ++
 (slotname slot) ++ " EMPTY")
 else Right ((take slot itemCounts) ++
 [(count - 1, price)] ++
 (drop (slot+1) itemCounts))
 (count, price) = itemCounts !! slot
 in case newinv of
 Left a -> machine t cs (os ++ [a])

vend takes 4 arguments – slot #,
machine state, input stream, output

stream, returns tuple of new machine
state, output stream.

-- vend item
vend :: Int -> MachineState -> [String] -> [String] ->
(MachineState, [String])
vend slot t@(MachineState coinbox deposits itemCounts)
cs os =
 let unspent = sum $ map amount deposits
 newinv = if count==0 then Left ("REPORT " ++
 (slotname slot) ++ " EMPTY")
 else Right ((take slot itemCounts) ++
 [(count - 1, price)] ++
 (drop (slot+1) itemCounts))
 (count, price) = itemCounts !! slot
 in case newinv of
 Left a -> machine t cs (os ++ [a])

Use helper amount with map
and sum to compute unspent

amount.

-- vend item
vend :: Int -> MachineState -> [String] -> [String] ->
(MachineState, [String])
vend slot t@(MachineState coinbox deposits itemCounts)
cs os =
 let unspent = sum $ map amount deposits
 newinv = if count==0 then Left ("REPORT " ++
 (slotname slot) ++ " EMPTY")
 else Right ((take slot itemCounts) ++
 [(count - 1, price)] ++
 (drop (slot+1) itemCounts))
 (count, price) = itemCounts !! slot
 in case newinv of
 Left a -> machine t cs (os ++ [a])

Use helper amount with map
and sum to compute unspent

amount.

Use (!!) index operator and
deconstructing tuple pattern to retrieve

count and price for selected slot.

-- vend item
vend :: Int -> MachineState -> [String] -> [String] ->
(MachineState, [String])
vend slot t@(MachineState coinbox deposits itemCounts)
cs os =
 let unspent = sum $ map amount deposits
 newinv = if count==0 then Left ("REPORT " ++
 (slotname slot) ++ " EMPTY")
 else Right ((take slot itemCounts) ++
 [(count - 1, price)] ++
 (drop (slot+1) itemCounts))
 (count, price) = itemCounts !! slot
 in case newinv of
 Left a -> machine t cs (os ++ [a])

Compute new inventory as
Either String [(Int, Int)] to

return an error if slot is empty
or else return new inventory.

Use (!!) index operator and
deconstructing tuple pattern to retrieve

count and price for selected slot.

-- vend item
vend :: Int -> MachineState -> [String] -> [String] ->
(MachineState, [String])
vend slot t@(MachineState coinbox deposits itemCounts)
cs os =
 let unspent = sum $ map amount deposits
 newinv = if count==0 then Left ("REPORT " ++
 (slotname slot) ++ " EMPTY")
 else Right ((take slot itemCounts) ++
 [(count - 1, price)] ++
 (drop (slot+1) itemCounts))
 (count, price) = itemCounts !! slot
 in case newinv of
 Left a -> machine t cs (os ++ [a])

If newinv pattern matches Left a, then
return the error message bound to a

from vend.

 Right a -> if unspent < price then
 machine t cs (os ++
 ["REPORT INSUFFICIENT DEPOSIT"])
 else if unspent == price then
 machine t {coinbox = coinbox ++
 deposits, deposits=[],
 itemCounts=a} cs (os ++
 [slotname slot])
 else
 let change = getChange
 (coinbox++deposits)
 (unspent-price)
 in case change of
 Nothing -> machine t cs (os++
 ["REPORT USE EXACT CHANGE"])
 Just c -> machine t {coinbox =
 ((coinbox++deposits) \\ c),
 deposits=[], itemCounts=a} cs
 (os++(slotname slot):
 (map name c))

If unspent deposits less
than price, report error.

 Right a -> if unspent < price then
 machine t cs (os ++
 ["REPORT INSUFFICIENT DEPOSIT"])
 else if unspent == price then
 machine t {coinbox = coinbox ++
 deposits, deposits=[],
 itemCounts=a} cs (os ++
 [slotname slot])
 else
 let change = getChange
 (coinbox++deposits)
 (unspent-price)
 in case change of
 Nothing -> machine t cs (os++
 ["REPORT USE EXACT CHANGE"])
 Just c -> machine t {coinbox =
 ((coinbox++deposits) \\ c),
 deposits=[], itemCounts=a} cs
 (os++(slotname slot):
 (map name c))

If unspent deposits exactly equal
price, move deposits to coinbox,

adopt new inventory, and add
item to output stream.

 Right a -> if unspent < price then
 machine t cs (os ++
 ["REPORT INSUFFICIENT DEPOSIT"])
 else if unspent == price then
 machine t {coinbox = coinbox ++
 deposits, deposits=[],
 itemCounts=a} cs (os ++
 [slotname slot])
 else
 let change = getChange
 (coinbox++deposits)
 (unspent-price)
 in case change of
 Nothing -> machine t cs (os++
 ["REPORT USE EXACT CHANGE"])
 Just c -> machine t {coinbox =
 ((coinbox++deposits) \\ c),
 deposits=[], itemCounts=a} cs
 (os++(slotname slot):
 (map name c))

Otherwise, try to make change. If
unsuccessful, report message to use exact
change. If successfully made change, then

move deposits to coinbox except for change,
adopt new inventory, and add item and change

to output stream.

(\\) is list
difference
operator.

{- loop, parsing list of commands from stdin,
 sending it to machine, displaying output,
 and then tail recursing -}
vendmachine :: MachineState -> IO ()
vendmachine i =
 do input <- getLine
 let (newstate, strs) = machine i (cmds input) []
 mapM (\x -> putStrLn ("-> " ++ x)) strs
 vendmachine newstate

vendMachine takes a current
MachineState and generates

an IO action that must run
within the IO monad.

{- loop, parsing list of commands from stdin,
 sending it to machine, displaying output,
 and then tail recursing -}
vendmachine :: MachineState -> IO ()
vendmachine i =
 do input <- getLine
 let (newstate, strs) = machine i (cmds input) []
 mapM (\x -> putStrLn ("-> " ++ x)) strs
 vendmachine newstate

IO action composed
of sequence of
other IO actions

{- loop, parsing list of commands from stdin,
 sending it to machine, displaying output,
 and then tail recursing -}
vendmachine :: MachineState -> IO ()
vendmachine i =
 do input <- getLine
 let (newstate, strs) = machine i (cmds input) []
 mapM (\x -> putStrLn ("-> " ++ x)) strs
 vendmachine newstate

First get line from
stdin, bind it to input

{- loop, parsing list of commands from stdin,
 sending it to machine, displaying output,
 and then tail recursing -}
vendmachine :: MachineState -> IO ()
vendmachine i =
 do input <- getLine
 let (newstate, strs) = machine i (cmds input) []
 mapM (\x -> putStrLn ("-> " ++ x)) strs
 vendmachine newstate

Next, call pure functional
code to parse cmds from
input and process them,

returning new machine state
and output stream.

{- loop, parsing list of commands from stdin,
 sending it to machine, displaying output,
 and then tail recursing -}
vendmachine :: MachineState -> IO ()
vendmachine i =
 do input <- getLine
 let (newstate, strs) = machine i (cmds input) []
 mapM (\x -> putStrLn ("-> " ++ x)) strs
 vendmachine newstate

Next, use mapM to apply
anonymous function returning IO

action over a list into an IO
action performing all the output.

{- loop, parsing list of commands from stdin,
 sending it to machine, displaying output,
 and then tail recursing -}
vendmachine :: MachineState -> IO ()
vendmachine i =
 do input <- getLine
 let (newstate, strs) = machine i (cmds input) []
 mapM (\x -> putStrLn ("-> " ++ x)) strs
 vendmachine newstate

Finally, invoke the same
computation again using the new

current machine state.

{- run machine, starting off initially empty
 coinbox, empty deposits, three each of
 65 cents, $1.00 and $1.50 items -}
runMachine = vendmachine (MachineState [] []
 [(3, 65), (3, 100), (3, 150)])

Run vending machine, starting with
initial inventory and pricing, and

empty coinbox, no deposits.

What's left? service. If you
understand the rest, you

should be able to figure out
service.

-- factorial of n (2 different implementations)
fact 0 = 1
fact n = n * fact (n - 1)
fact' n = foldr (*) 1 [1..n]
-- Fibonacci sequence: 0, 1, 1, 2, 3, ..
fib = 0 : 1 : zipWith (+) fib (tail fib)

-- powers of 2
pow2 = map (2^) [0..]

-- prime numbers
primes = 2:[x | x <- [3,5..],
 all (/= 0) $ map (x `mod`) [2..x-1]]

-- Simple stable sort
sort :: (Ord a) => [a] -> [a]
sort [] = []
sort (x:xs) = sort [l | l <- xs, l < x] ++ [x] ++
 sort [r | r <- xs, r >= x]

Goodies, Success Stories

● quickcheck – unit tests from assertions
● hackage – huge DB of contributed code
● cabal – nifty build system (or use ghc –make for simple projs)
● haddock – produce HTML docs ala Javadoc
● darcs – distributed source control
● FFI – interface with C, etc. code
● STM – Software Transactional Memory
● Parsec – easy parser generator
● Parallel, Concurrent, Template Haskell
● Scrap Your Boilerplate (SYB)
● HappS(tack) – applications server
● xmonad – tiny tiling X window manager
● pugs – First Perl 6 implementation
● Monadius, Frag – videogames
● Galois, Inc.
● Credit Suisse
● Functional Reactive Programming

Gotchas

● Silent Int overflow
● Error messages seem scary, at first
● Scary Category Theory, Abstract Algebra underpinnings
● Easy to write hard-to-decipher code
● Can get burned with “space leaks” -- sometimes laziness

bites you and you have to force strict evaluation
● Learning curve may be daunting, especially if you dive

head-first into category theory and reading whitepapers
about folding, functors, morphisms, arrows, monads, etc.

Additional Resources – we only scratched the surface

● Real World Haskell, physical book or free online
● GHC library HTML docs
● http://www.haskell.org
● Haskell 98 Report (the standard)
● Typeclassopedia (in The Monad Reader, issue 13)
● Many other books, online tutorials, wikis, Haskell IRC
● Project Euler – gain fluency and strain your brain

http://www.haskell.org/

